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1. Introduction

In the recent days, our perspectives in the search for physics beyond the Standard Model

(SM) have enriched considerably with the developments of theories with extra (compact)

dimensions [1 – 3]. In particular, these extra spatial dimensions allow to lower the grav-

ity scale down to the TeV [1, 2], thus addressing the long standing puzzle of the gauge

hierarchy problem, when gravitational interactions feel these dimensions. Such TeV-scale

Extra Dimensional (ED) models have attracted a great attention from the experimentalist

community, since one can undertake their precision studies in the next generation colliders.

Depending on the geometry of the extra dimensions (shape and/or size), and the field lo-

calization, a wide variety of extra dimensional models have been proposed. In addition to

the gauge hierarchy problem, these models address several other questions in the different

avenues of particle physics, cosmology and string theory.

Among a large number of possible realizations of the ED models, the scenario, with

additional right handed neutrinos (being gauge singlet, and thus sterile) in flat compact

extra dimensions and SM fields localized on a brane, provides an interesting alternative [4 –

7] capable of accounting for the observed light neutrino masses [8]. Also, the detailed

experimental results on neutrino properties, in the context of this scenario, may be utilized

to shed light on the bulk geometry (for phenomenological studies, see [4, 5, 9]).
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In this paper we study this scenario based on the formalism of [11]. Our first aim is to

determine whether a realistic neutrino spectrum can still be generated when the constraints

on mixing angles between active and sterile neutrinos are taken into account, and particu-

larly the severe constraint from the SNO experiment. Such constraints should indeed apply

on the considered scenario, since the new right handed neutrino, as well as each component

of its infinite massive tower of Kaluza-Klein (KK) excitations, constitute sterile neutrinos

which mix with SM active neutrinos. We consider the general Lagrangian, which possess

two distinct sources of Lepton number (L) breaking. The phenomenological constraints on

neutrinos were applied, in [12], to the model with an L-conserving Lagrangian assuming

no brane shifting.

Our second goal is to address the issue of a successful leptogenesis within such realistic

ED model in agreement with experimental neutrino data. More precisely, by studying the

decays of the heavy KK neutrinos, we explore the possibilities that these scenarios account

for the observed baryonic asymmetry of the Universe by means of the Fukugita-Yanagida

mechanism of leptogenesis [13]. In this mechanism an excess of L, generated by out-of-

equilibrium L-violating decays of the heavy neutrinos (arising with the L-violating terms

present in our Lagrangian), is converted into a Baryon number (B) asymmetry through

(B + L)-violating sphaleron interactions. At this stage we mention a preliminary work [6]

where the leptogenesis has also been considered in the same context of flat extra dimensions,

but with an extended Higgs sector compared to the SM and without considering the various

experimental neutrino data.

We will consider the case where gravity may propagate in an higher dimensional space

of [1 + (3 + ng)] dimensions, where ng ≥ 1. Hence we have two variants of the scenario,

one with ng = 1 and the other with ng > 1. In all cases, the SM particles are localized on

a [1 + 3] dimensional subspace (3-brane). For simplification reason, the sterile neutrinos

are assumed to propagate in [1 + (3 + 1)] dimensions.

The organization of the paper is as follows. We begin with a brief outline of the essential

features of the extra dimensional scenario in section 2. The relevant phenomenological

constraints on neutrinos are discussed in section 3, while our numerical results are presented

and discussed in section 4. Next in section 5, the issue of leptogenesis is addressed. Lastly,

we summarize our studies, and conclude, in section 6.

2. Minimal higher dimensional model for neutrinos

In this section we describe the minimal ED framework with a 5-dimensional iso-singlet

right handed neutrino added to the field content of the SM [4, 11]. Here, we stick to one

generation of SM neutrinos. The fifth flat dimension, along which propagates the right

handed neutrino, is compactified over a S1/Z2 orbifold. The SM fields are localized on a

3-brane, whereas gravity propagates in the bulk.

The leptonic field content is,

L(x) =

(

νℓ(x)

ℓL(x)

)

, ℓR(x) , (2.1)
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as in the SM, where νℓ, ℓL, ℓR are 4-dimensional Weyl spinors, plus the 5-dimensional

singlet neutrino,

N(x, y) =

(

ξ(x, y)

η̄(x, y)

)

, (2.2)

where y parameterizes the compact fifth direction, and ξ, η are the 2-component spinors.

The y-coordinate is compactified on a circle of radius R (the periodic boundary condition

N(x, y) = N(x, y + 2πR) is imposed) on the singlet neutrino field. Additionally, under

the action of Z2 symmetry, the two 2-component spinors may be associated with opposite

parities,

ξ(x, y) = ξ(x,−y) , η(x, y) = −η(x,−y) . (2.3)

The SM fields are localized at the brane, which, just for generality, we may assume to be at

y = a, instead of at the orbifold fixed point y = 0. For this model, an effective Lagrangian

respecting the 4-dimensional Lorentz invariance reads as,

Leff =

2πR
∫

0

dy

{

N̄
(

iγµ∂µ + γ5∂y

)

N − 1

2

(

MNT C(5)−1γ5N + h.c.
)

(2.4)

+δ(y − a)

[

h1

(MF )1/2
LΦ̃∗ξ +

h2

(MF )1/2
LΦ̃∗η + h.c.

]

+ δ(y − a)LSM

}

,

where Φ̃ = iσ2Φ
∗ is the hypercharge-conjugate of the SM Higgs doublet Φ, with hypercharge

Y (Φ) = 1, LSM is the SM Lagrangian, M is the Majorana mass for N (we do not specify

its scale for the moment), C(5) is the 5-dimensional charge conjugation operator and MF

is the fundamental ng-dimensional gravity scale, given by

MP = (2πMF R)ng/2MF , (2.5)

for the simple case where all the compactification radii are of equal size R, MP being

the 4-dimensional Planck scale. A Dirac mass term mDN̄N is not allowed in eq. (2.4)

because of the Z2 discrete symmetry. Note that the Majorana mass term for N breaks the

5-dimensional Lorentz invariance as in [10].

Following eq. (2.3), the 2-component spinors ξ and η can be expanded in Fourier series

as,

ξ(x, y) =
1√
2πR

ξ0(x) +
1√
πR

∞
∑

n=1

ξn(x) cos

(

ny

R

)

, (2.6)

η(x, y) =
1√
πR

∞
∑

n=1

ηn(x) sin

(

ny

R

)

, (2.7)

where the chiral spinors ξn(x) and ηn(x) form an infinite tower of KK fields. Using these
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expansions and integrating out the y-coordinate, the effective Lagrangian reduces to,

Leff = LSM + ξ̄0(iσ̄
µ∂µ)ξ0 +

(

h̄
(0)
1 LΦ̃∗ξ0 −

1

2
M ξ0ξ0 + h.c.

)

(2.8)

+
∞
∑

n=1

[

ξ̄n(iσ̄µ∂µ)ξn + η̄n(iσ̄µ∂µ)ηn +
n

R

(

ξnηn + ξ̄nη̄n

)

−1

2
M

(

ξnξn + η̄nη̄n + h.c.
)

+
√

2
(

h̄
(n)
1 LΦ̃∗ξn + h̄

(n)
2 LΦ̃∗ηn + h.c.

)

]

in a basis in which M is positive, and with:

h̄
(n)
1 =

h1

(2πMF R)1/2
cos

(

na

R

)

=

(

MF

MP

)1/ng

h1 cos

(

na

R

)

= h̄1 cos

(

na

R

)

, (2.9)

h̄
(n)
2 =

h2

(2πMF R)1/2
sin

(

na

R

)

=

(

MF

MP

)1/ng

h2 sin

(

na

R

)

= h̄2 sin

(

na

R

)

. (2.10)

For deriving the last two equalities on the right hand sides of eqs. (2.9)–(2.10), we have

made use of eq. (2.5).

Eqs. (2.9) and eq. (2.10) tell us that the reduced 4-dimensional Yukawa couplings h̄
(n)
1,2

can be suppressed by many orders depending on the hierarchy between MP and MF ; for

example, if gravity and the bulk neutrino feel the same number of extra dimensions, say

ng = 1, then these couplings are suppressed by a factor MF /MP ∼ 10−15, for MF ≈ 10 TeV

(see also [4, 5]).

From eq. (2.2) we observe that ξ and η̄ have the same lepton number. Thus, the

simultaneous presence of the two operators LΦ̃∗ξ and LΦ̃∗η in eq. (2.8) leads to lepton

number violation. If the brane were located at one of the two orbifold fixed points (y = 0

or πR), the operator LΦ̃∗η would have been absent in eq. (2.8) as a consequence of the

discrete Z2 symmetry. The two operators can coexist, leading to breaking of the lepton

number, if we allow the brane to be shifted by an amount a(6= 0) from the orbifold fixed

points. In fact, it is possible to perform such a shifting of the brane (even in a continuous

way) respecting the Z2 invariance of the original higher dimensional Lagrangian under

certain restrictions in Type-I string theories [14]. As indicated in [4, 11], the Z2 invariance

can be taken care of by allowing the replacements,

ξ δ(y − a) → 1

2
ξ
[

δ(y − a) + δ(y + a − 2πR)
]

,

η δ(y − a) → 1

2
η

[

δ(y − a) − δ(y + a − 2πR)
]

, (2.11)

with 0 ≤ a < πR and 0 ≤ y ≤ 2πR. Obviously, a Z2-invariant implementation of brane-

shifted couplings would require the existence of at least two branes placed at y = a and

y = 2πR − a. A remarkable feature of the brane-shifted framework was pointed out [11],

where it has been shown that in such a framework it is possible to completely de-correlate

the effective Majorana-neutrino mass 〈m〉, that is effectively measured, and the scale of

light neutrino masses, as to have 〈m〉 within an observable range.
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Therefore, the Lagrangian (2.8) contains two types of Majorana neutrino mass term

(involving respectively the parameters M and h̄
(n)
2 ) which lead both to a breaking of L.

This L-breaking is a necessary ingredient of leptogenesis.

Following the notations of reference [4], we now introduce the weak basis for the KK

Weyl-spinors,

χ±n =
1√
2

( ξn ± ηn ), (2.12)

followed by a rearrangement of ξ0 and χ±
n states, such that, for a given value of k (say,

k = k0) the smallest diagonal entry of the neutrino mass matrix is

|ε| = min
(

∣

∣

∣

∣

M − k0

R

∣

∣

∣

∣

)

≤ 1/(2R). (2.13)

In this new basis the reordered 4-component Majorana-spinor vector Ψν is the following,

ΨT
ν =

[(

χνℓ

χ̄νℓ

)

,

(

χk0

χ̄k0

)

,

(

χk0+1

χ̄k0+1

)

,

(

χk0−1

χ̄k0−1

)

, · · · ,

(

χk0+n

χ̄k0+n

)

,

(

χk0−n

χ̄k0−n

)

, · · ·
]

(2.14)

while the effective Lagrangian for right handed neutrinos reduces to,

Lkin =
1

2
Ψ̄ν

(

i 6∂ − MKK
ν

)

Ψν , (2.15)

where MKK
ν is the corresponding neutrino mass matrix given by,

MKK
ν =

























0 m(0) m(−1) m(1) m(−2) m(2) · · ·
m(0) ε 0 0 0 0 · · ·
m(−1) 0 ε − 1

R 0 0 0 · · ·
m(1) 0 0 ε + 1

R 0 0 · · ·
m(−2) 0 0 0 ε − 2

R 0 · · ·
m(2) 0 0 0 0 ε + 2

R · · ·
...

...
...

...
...

...
. . .

























. (2.16)

The most important consequence of such a rearrangement is that the mass scale M , which

we did not specify earlier but which could be as large as possible, is now replaced by the

light mass scale ε. The mass entries in the first row and first column of matrix (2.16) are

given by the relation,

m(n) =
v√
2

[

h̄1 cos

(

(n − k0)a

R

)

+ h̄2 sin

(

(n − k0)a

R

)]

= m cos

(

na

R
− φh

)

,(2.17)

with,

m =
v

2

√

h2
1 + h2

2

πMF R
, (2.18)

φh = tan−1

(

h2

h1

)

+ k0
a

R
, (2.19)
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where v is the vacuum expectation value of the SM Higgs boson.

We observe that the structure of neutrino mass matrix (2.16), originating from a

combination of Majorana and Dirac mass terms, is different from the pure Dirac mass case

considered in the preliminary work [12].

3. Constraints for a realistic spectrum

The neutrino spectra is obtained by diagonalizing the mass matrix MKK
ν of eq. (2.16).

It has been shown in [11], for a one-generation case, that the eigenvalue equation for a

restricted class of cases with a = πR/q, where q is an integer greater than 1, is easily

tractable analytically. We have, in the generic case, solved the characteristic eigenvalue

equation numerically to obtain the eigenvalues of MKK
ν , sticking to the one-generation case.

We have diagonalized the N×N matrix of eq. (2.16) for a N satisfying MF > Mmax (see end

of the paragraph). We have systematically checked that the N value used (typically ∼ 500

for the smallest R−1 values to ∼ 10 for the largest R−1 values) constitutes a dimension at

which the lightest eigenvalues converge and are completely stabilized (with increasing N).

We have performed a scan over the whole parameter space of the ED model described above

in order to find the regions in agreement with basic experimental constraints on neutrinos.

The total parameter space consists of R−1, ε, the complex Yukawa couplings h1 and h2,

the brane-shift parameter a, and the phase φh defined in eq. (2.19). From eq. (2.5), the

effective cut off scale MF for a given R−1 is completely fixed for ng = 1; while for ng > 1,

it depends on ng and the respective compactification radii (respecting MF > Mmax, where

Mmax is the mass of the heaviest neutrino eigenstate considered).

While scanning over the total parameter space described above in order to search for

a realistic neutrino mass spectrum, we have to ensure several constraints described in the

following;

• There exist phenomenological constraints on the mixing angles between active neu-

trinos and sterile ones. These constraints apply on the present model, as the 0-mode

and KK excitations of the additional right handed neutrino behave exactly as ster-

ile neutrinos − the right handed neutrino having no electroweak interactions (see

e.g. [15]).

For instance, in a model with a unique sterile neutrino, and assuming for simplic-

ity one lepton flavor, the mixing angle θs between the active and sterile neutrino is

constrained typically by tan θ2
s . 10−6 −10−1 for ∆m2 ∈ [10−12 −102] eV2 (∆m2 be-

ing the mass eigenvalue squared difference) [16] from cosmological and astrophysical

considerations combined with data from atmospheric, solar (including SNO), reactor

and short base-line experiments. In the limiting case ∆m2 ≫ ∆m2
sun ∼ 10−5 eV2,

the SNO bound on the fraction of oscillating sterile neutrinos coming from the sun

ηs = sin2 θs/2 [16], becomes approximatively [17, 18]

ηs . 1.2 × 10−1 at 1σ. (3.1)

Similarly, in our framework, one can also take as an approximation that the χk0

state, whose mass ε is the first appearing as a diagonal matrix element in eq. (2.16),

– 6 –
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is the only sterile neutrino that may not decouple from the active SM neutrino νℓ.

Indeed, by definition of ε in eq. (2.13), the following χk0±n states get larger and larger

diagonal mass matrix elements ε ± n/R and thus decouple more and more from νℓ,

given the symmetric structure of the mass matrix in eq. (2.16). Therefore, under the

above approximation, the SNO bound on θs apply in our framework also, where the

mixing angle θs is deduced only from the 2 × 2 block matrix of eq. (2.16):

tan 2θs ≈
2m(0)

ε
. (3.2)

The above SNO bounds impose a significant upper limit on θs leading to a case

comparable to the see-saw mechanism [19] (see also the third point) so that the

smallest eigenvalue mν1 and the next-to-smallest eigenvalue mν2 read as

mν1 ≈ m(0)

ε
m(0), mν2 ≈ ε. (3.3)

The constraint in eq. (3.1) imposes m(0) ≪ ε (c.f. eq. (3.2)), which may be achieved

in the following two cases (see eq. (2.17)):

m ≪ ε , and/or φh ≃ π/2 + 2qπ , (3.4)

where q is an integer.

The previous approximations regarding the implications of the constraints on sterile

neutrino mixing will turn out to be useful in the interpretation of our results. In order

to quantitatively take into account the effects of the KK tower of neutrino states when

applying the main SNO constraint, we have imposed the bound: P (νe → νs) < 0.40

at 90% C.L. (coming from the SNO data [20] combined with the Super-Kamiokande

results [21]). P (νe → νs) represents the transition probability between solar SM

electron-neutrino νe and sterile neutrino νs, and, is given by P (νe → νs) = 1 −
∑

ℓ=e,µ,τ P (νe → νℓ) where P (νe → νℓ) =
∑

n |Ven|2|Vℓn|2 [22] with ℓ = e in the one

active flavor case. The sum here is taken over the index n, which labels the neutrino

mass eigenstates, and, V diagonalizes the neutrino mass matrix eq. (2.16). The sterile

KK excitations are little affected by matter effects [12]. Following the same numerical

approach for N as described in the beginning of this section, we have checked that

for the chosen value of N (corresponding to the maximum value of n truncating the

sum involved in the P (νe → νℓ) expression), P (νe → νs) reaches a value which is

not significantly sensitive to further increases of the mass matrix dimension. In other

terms, a satisfactory level of convergence can be reached in the summation of KK

excitations. In fact, the stabilized values of P (νe → νs) for our case turn out to be

systematically several orders of magnitude smaller than the combined SNO-Super-

Kamiokande bound mentioned previously, in the final regions of parameter space

which respect all the constraints discussed in this section.

• Due to the see-saw structure of the mass matrix, the two eigenstates ν1 and ν2 are

respectively composed mainly by the SM neutrino νℓ and sterile state χk0 . Hence

– 7 –
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one can apply the phenomenological bound on mν1 derived for SM neutrinos, which

in the case of one flavor is typically [23]

mν1 ∼ 10(−2 , 0) eV. (3.5)

• We have also ensured that the mass of the next-to-lightest1 eigenstate ν2 is larger

than the mass of the Higgs boson, typically

mν2 ≥ 200 GeV, (3.6)

for our purpose which deals with its possible lepton-number violating decay into Higgs

and leptons: ν2 → ℓ±φ∓ (the three-body decay channel of the ν2 is ν2 → ℓ±ℓ∓ν1).

The choice of this condition mν2 > 200 GeV is important for our study of leptogenesis

(in section 5). We could also have imposed this constraint on any higher-mass neu-

trino eigenstate mνi
> 200 GeV with i > 2, and studied the decay νi → ℓ±φ∓. How-

ever, any higher state νi (i > 2), in addition to its decay channel νi → ν1ℓ
+ℓ−, pos-

sesses several other decay channels: their decays into lighter eigenstates νi → νjℓ
+ℓ−

or νi → νjν1ν1 with i > j ≥ 2. How the presence of these additional decay channels

is going to affect the Boltzmann equations and the washout factors, and thus the

resulting lepton abundance, is a matter of non-trivial calculation that we will not ad-

dress here. Such additional decay channels do not exist for the state ν2, as the decays

ν2 → ν2ν1ν1 and ν2 → ν2ℓ
+ℓ− are not possible kinematically. Here we consider the

possibility of the ED model to yield a successful leptogenesis via the ν2 decay.

With this bound mν2 ≥ 200 GeV we are in the case where ∆m2 = m2
ν2
−m2

ν1
≫ ∆m2

sun

so that the relevant SNO bound is the one given in eq. (3.1). Furthermore, this con-

dition forces mν2 to be much larger than mν1 and so constitutes another justification

for approximating the two lightest eigenvalues by the see-saw formulas (3.3).

At this stage the following remarks on neutrino mass are in order. There are typically

three different mass suppression mechanisms in the extra dimensional scenario, that may

suppress the mass of the SM neutrino.

(i) The usual see-saw like suppression, from a heavy Majorana mass M for the right

handed neutrino.

(ii) An effective ED see-saw type mechanism resulting from the massive KK tower [4, 6],

where the KK excitations of the additional right handed neutrino play the rôle of the

right handed neutrino in the usual see-saw mechanism.

(iii) A suppression of the Yukawa couplings from the ED wavefunction overlap mechanism

affecting the neutrino mass via the ED volume factor (MF R)1/2 (see eq. (2.18)) and

the factor cos(na/R − φh) (see eq. (2.17)).

1In our notations we order the mass eigenvalues increasingly, i.e. mν1
≤ mν2

≤ · · ·.
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The main motivation for working in an ED scenario is to generate small SM neutrino

masses using the second and third mechanisms only, i.e. the usual see-saw mechanism does

not constitute the main suppression origin. Is that possible? As we have already discussed,

the diagonal matrix element ε contributes dominantly to the eigenvalue mν1 since it is the

lightest one. Hence in order to insure that the neutrino mass suppression is not mainly due

to the usual see-saw mechanism, one can impose the condition M 6= ε, which is equivalent

to M > 1/2R (see upper left 2 × 2 block matrix in eq. (2.16)). This condition can always

be satisfied since the mass scale M never appears in this scenario directly: the presence of

the infinite tower of KK states guarantees that only the value of M modulo R−1, namely

ε (in absolute values) plays a physical rôle [4, 11].

We now discuss the ranges considered for each fundamental free parameter. First we

made sure that it is mainly the second and/or the third mechanism (described previously)

that suppresses mν1, by letting the numerical values of the Yukawa couplings h1 and h2 to

be within the natural range ∼ 0.1 − 5 with the respective phases ranging between 0 and

π. The phase φh was also varied within 0 and π. We varied R−1 from a few tens of eV

up to ∼ 1019 GeV. For R−1 & 1019 GeV, the heaviest state considered has a mass Mmax

greater than MF , i.e. our low energy effective theory looses its predictivity. The range of

R−1 being so huge, we considered a logarithmic binning of the scale of R−1. For each R−1,

the parameter ε may also vary within a large range, especially when R−1 is large, following

eq. (2.13). So we also scan over ε by choosing randomly the values of α in ε = 10α. The

brane shift parameter a was scanned in a similar way in 0 < a < πR. Finally, we performed

a scan by randomly choosing ∼ 106 points, so that each point corresponds to a distinct but

random combination of all the parameters.

4. Results and discussion

When scanning over the parameter space {R−1, ε, φh, h1, h2, a} we have imposed a realistic

spectra, i.e. one respecting all the constraints mentioned in the previous section, by using

the numerical estimation of this neutrino mass spectra. We have explored the two typical

situations allowing for such realistic spectra (c.f. eq. (3.4)) within two scenarios charac-

terized by ng = 1 and ng > 1. Our observations and discussion for both the scenarios are

given below. We have also included, in each case, possible analytical interpretations of our

results.

4.1 Scenario with ng = 1

(i) The scale MF : We recall (see eq. (2.5)) that the cut off scale MF depends only

on R−1 for ng = 1. As we increase the scale of R−1 from a few tens of eV to

∼ 1019 GeV, the corresponding scale MF increases from ∼ 109 GeV to ∼ 1019 GeV,

following eq. (2.5). This makes the scale m in eq. (2.18) increasing from ∼ 102 eV to

∼ 103 GeV.

(ii) The parameter R−1: We observed that the energy scale R−1 has to be & 400 GeV

(corresponding to MF & 1013 GeV) for generating a realistic neutrino spectrum (see
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figure 1). The reason is that R−1 ≥ 2 |ǫ| (from eq. (2.13)) with ǫ ≈ mν2 from eq. (3.3)

and we have imposed mν2 ≥ 200 GeV. With regard to the neutrino mass, what is the

physical meaning of this lower bound on R−1? We know from eq. (2.5), that as R−1

increases, MF also increases but at a much slower rate compared to R−1. As a result,

the quantity 1/
√

MF R increases with R−1 so that the volume suppression mechanism

for Yukawa couplings becomes less and less effective (see eqs. (2.9), (2.10)), for a fixed

cos φh. Besides, the hierarchy between m(0) ∝ 1/
√

MF R and R−1 increases with R−1,

so that the effective ED see-saw mechanism becomes more effective in the reduction of

mν1 if ε is set at its maximum value 1/2R. Indeed the denominator of mν1 (eq. (3.3))

clearly increases at a faster rate compared to the numerator m(0) - thus making the

see-saw formulae more effective as R−1 increases. Therefore, the fact that there is a

minimum value for R−1 means that the see-saw mechanism plays at least a certain

rôle in the neutrino mass suppression.

(iii) The parameter ε: For all R−1 & 400 GeV, there exists a minimum value of ε,

starting from which we end up with a realistic spectrum for all possible higher values

of ε (≤ 1/2R). This minimum value is significantly larger than 200 GeV (recall that

ε ≈ mν2 ≥ 200 GeV) for 1/R & 108 GeV, as we see on figure 1 which shows the plot

of ε versus 1/R. This can be understood as follows.

This figure results from the general scan, and thus includes both the cases m ≪ ε

and φh ∼ π/2 + 2qπ. The three straight lines correspond to the ε values obtained

analytically from the approximate see-saw relation in eq. (3.3), for mν1 = 1eV, 0.1 eV

and 0.01 eV, and
√

h2
1 + h2

2 = 4 and φh = 0 (i.e. cos φh = 1). Therefore, the points

obtained close to these lines correspond to the case where the mν1 suppression is

mainly due to the configuration (1). The regions far below these lines indicate the

simultaneous occurrence of both configuration (1) and (2) i.e. m ≪ ε as well as

φh ∼ π/2 + 2qπ. Starting from these regions and approaching higher R−1 values,

m increases, making the mν1 suppression from (1) less effective. Thus if we are to

generate the same amount of suppression in mν1 (or equivalently the same smallness

of ratio m(0)/ε) for a fixed ε, the mν1 suppression coming from case (2) must be more

effective, i.e. φh has to be closer to π/2. This condition on φh basically reduce the

allowed range for φh, so that the scan misses the allowed φh values. This explains

the large vacant area in figure 1 below the three lines. Therefore, the easier way

to generate the suppression in the higher R−1 region is by case (1), i.e. by pushing

the minimum value of ε to be still higher to account for the increase in m. Quite

naturally therefore, the available parameter region for higher R−1 decreases, and is

concentrated near maximal values of ε. Nevertheless, because of choosing to scan

over the φh angle, the particular regions where ak0 ≪ R and h1 ≪ h2 (leading to

a φh value close to π/2) have been missed. Anyway such a hierarchy between the

Yukawa couplings h1,h2 would have no theoretical explanation and, in contrast, the

interest of the considered ED model is to have h1 ∼ h2 ∼ 1 while suppressing the

neutrino masses mainly from the second and/or third mechanism described above

(the purely ED mechanisms).
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Figure 1: Plot of ε (in GeV) versus 1/R (in GeV) obtained from the scan. The three straight lines

represent the analytical approximation of eq. (3.3) for the indicated values of mν1
.

One must realize that the specific points in figure 1, which are such that ε ≪ 1/R,

correspond to a value of M extremely close to k0/R (see eq. (2.13)) and in turn to a

situation of fine-tuning between the three parameters M , k0 and R.

(iv) The parameters φh and a: First let us discuss the spectrum. Since we are always

working in a parameter region such that the off-diagonal elements of the mass matrix

of eq. (2.16) are much smaller than the diagonal elements, the eigenvalues mνi
of the

matrix, up to a good approximation (see the section A), are equal to the diagonal

elements for i ≥ 2: mν2 ∼ ε, mν3 ∼ ε − 1/R, mν4 ∼ ε + 1/R, and so on. In general,

the masses of the higher neutrino states can be expressed as mν(2p+1)
∼ ε − p/R,

mν(2p+2)
∼ ε + p/R, where p is an integer ≥ 1. This clearly tells us that for a given

R−1, the nature of the resulting spectra is primarily dictated by the choice of ε. For

example, if ε = 1/2R, the resulting spectrum becomes almost pairwise degenerate

with |mν2| ∼ |mν3| (see eq. (3.3)), |mν4 | ∼ |mν5 |, and so on, while, for all the other

choices of ε, the resulting spectrum is hierarchical with mν2 < mν3 < mν4 < mν5 < · · ·
In particular, we found that for a given R−1, the overall nature of the resulting

spectrum feebly depends on the choice of the parameters φh and a. This is expected

since these parameters appear only in the non-diagonal mass-matrix elements which

are much smaller than the diagonal ones for any φh and a values (as those enter via

arguments of a cosine function). We have found that for any R−1 & 400 GeV, if ε ∼
1/2R, then all possible combinations of φh and a yield realistic spectra. Naturally,

these possible combinations of φh and a include a = 0 as well. For possible lower

values of ε, which may not correspond to m ≪ ε, a realistic spectra requires the

– 11 –
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Figure 2: Plot of m(0)/ε versus ε (in GeV).

second scenario φh ∼ π/2 + 2qπ (as already discussed). Note that for this case also,

a = 0 is a natural possibility. Thus the important conclusion that we made from

these observations was that a non-zero brane-shift is not essential for a realistic mass

spectrum.

Let us compare our observations with those of ref. [11]. The authors of reference [11]

found that when ε = 0, φh = 0 and a = 0, the mass spectra consists of massive

pairwise degenerate neutrino states without any massless state. They also found

that when ε = 1/2R, φh = 0 and a = 0, there is an almost massless state, and the

remaining spectra consists of pairwise degenerate massive neutrino states. We have

found the same observation for these two points.

They further found that when ε 6= 0 and 6= 1/2R, φh = 0 and a = 0, there is no

massless state and the mass spectra is hierarchical. We indeed find an almost massless

neutrino state in this case too, the overall spectrum being hierarchical.

They also found that unless ε = 1/2R, φh = π/4 and a = πR/2, the mass spectrum

consists of massive non-degenerate KK neutrinos. We find indeed that for ε = 1/2R,

φh = π/4 and a = πR/2, the high neutrinos states are pairwise degenerate.

However, we found that for several other combinations of these three parameters

one can also get a realistic mass spectrum. For example, we mentioned before that

for ε = 1/2R, we always get the spectra consisting of an almost massless state and

other states pairwise degenerate, irrespective of the numerical values of φh and a.

Our larger allowed domain of parameter space is due to the additional de-correlation

condition required in [11], and not considered here. In particular, a non-zero brane-

shift parameter is found to be necessary in [11] in order to account for this complete

de-correlation of the effective Majorana mass term 〈m〉 and the scale of light neu-

trino mass (the motivation being to have 〈m〉 in a potentially observable range). In

contrast, we find the brane-shift to be not essential for a realistic mass spectrum.
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(v) The quantity m(0): We finish this section by determining which of the two possible

ED mechanisms responsible for the suppression of mν1 (discussed in Sec 3) plays the

dominant rôle (for different values of R−1). Our discussion is based on the plot of

m(0)/ε versus ε in figure 2. One first observes clearly from the figure that system-

atically m(0) ≤ 10−5ε which means that the effective ED see-saw mechanism plays

always a significant rôle in reducing mν1 (see eq. (3.3)), as we have already noticed.

One see typically that the mν1 suppression, relative to the electroweak symmetry

breaking scale (v ∼ 102 GeV), can be due at 50% from the effective ED see-saw

mechanism and at 50% from the higher dimensional mechanism based on wave func-

tion overlap, a situation corresponding to ε ∼ 102 GeV and m(0) ∼ 10−3 GeV (such

that m(0)/v ∼ m(0)/ε ∼ 10−5). The suppression can even come purely from the effec-

tive ED see-saw mechanism, namely m(0)/ε ∼ 10−11 with m(0) ∼ v ∼ 102 GeV. Thus

the fact that m(0)/ε . 10−5 means that the ED see-saw mechanism is systematically

the dominant one.

This can interpreted in the following terms. All the conditions that we have imposed

resulted in a lower bound on R−1 (see above).2 Now, as R−1 increases, the extra

compact bulk space decreases, so that the wavefunction overlap factor increases,

making the suppression of mν1 from the geometrical mechanism less effective. Hence,

the different constraints (including the SNO one) limit the wave function overlap

mechanism effect. Nevertheless, thanks to the ED see-saw mechanism, a realistic

spectrum can still be generated.

4.2 Results for the ng > 1 scenario

We consider now another scenario where the right handed neutrino propagates only along

one extra dimension whereas gravity propagates in the whole bulk, the number ng and

sizes of extra dimensions being adjusted (with eq. (2.16) when all of them have the same

size 2πR) such that MF is as low as ∼ O(1) TeV in order to address the gauge hierarchy

problem. Recall that the solution to the gauge hierarchy problem within the ADD model

for ng = 1 is excluded by experimental arguments relative to the Newton law modification.3

The radius, as found previously, is bounded from above by R−1 & 400 GeV, since

R−1 ≥ 2 |ε|, ε ≈ mν2 and mν2 ≥ 200 GeV. As a consequence, m(0) ∼ v/
√

MF R & 102 GeV
4 as MF ∼ O(1) TeV, so that there is no significant suppression in m(0) (and hence in

mν1), relative to the electroweak scale v, coming from the ED overlap mechanism. Thus

the neutrino mass suppression must originate principally from the ED see-saw mechanism.

For that purpose, one should have m(0)/ε ∼ 10−11 (see eq. (3.3)) which together with

m(0) ∼ v/
√

MF R and |ε| < 1/2R leads to R−1 & 1026 GeV: an amount much larger

2In particular, the SNO bound constrains the mixing angles between active and sterile neutrinos, by this

way forcing typically the KK masses (∝ 1/R) to increase.
3In our case for the ng = 1 scenario, the cutoff scale was set around 1013 GeV and more. This model,

for sure, did not address the gauge hierarchy issue.
4Unless of course φh ∼ π/2 + 2qπ, but in order to decrease significantly the order of magnitude of

this lower bound on m(0), φh should be extremely close to π/2 + 2qπ which has a priori no theoretical

justification.
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than the fundamental scale MF ∼ O(1) TeV. Thus, for the ng > 1 scenario, generating

a realistic neutrino spectrum and addressing the gauge hierarchy issue simultaneously,

is only possible if there exists a compactification scale 1/R extremely different from the

fundamental scale MF (hence another hierarchy has to be introduced). Besides, such a

scenario is automatically in a non-predictable regime, since the condition Mmax < MF

translates into 1/R . TeV.

5. Leptogenesis

One interesting question to address is the possibility of having successful leptogenesis in

these ED scenarios. As has been argued in [6], the infinite KK tower of neutrinos associ-

ated with the 5-dimensional sterile neutrino may act as an infinite series of CP-violating

resonators. Thus, we probed the ED scenarios to see whether they can generate sufficient

lepton asymmetry.

5.1 Additional constraints and expectations

In the previous section we saw that the lightest neutrino ν1 in the generated spectrum

fulfills the absolute scale bound. We also constrained the next to lightest neutrino ν2 to

be heavier than the Higgs mass, so that it may decay at a temperature corresponding to

its mass and produce lepton asymmetry [13]. The out-of equilibrium condition may be

written as the following condition on the decay width of ν2,

Γν2 ≃ K22mν2

8π
< H(T = mν2), K

jj
≡ [λ†λ]

jj
, (5.1)

where H is the Hubble expansion rate at T = mν2, and λj is the modified Yukawa coupling

for the neutrino mass eigenstate νj. The initial Yukawa couplings, λ′, can be read from

eq. (2.17): m(j) = λ′
jv/

√
2. When the complex symmetric mass matrix in eq. (2.16) is

diagonalized, the weak states Ψν of eq. (2.14) transform to the mass eigenstates Ψmass
ν

following Ψν = V Ψmass
ν , where V is the diagonalizing matrix. Thus the initial Yukawa

couplings for right handed neutrinos λ′
i also transform into the modified Yukawa couplings

λj via the V matrix. We note the Yukawa couplings λi instead of λi1, where the index 1 is

fixed as it corresponds to the unique left handed SM lepton (we remind that we work under

the simplification assumption of one family) which moreover does not develop a KK tower.

The condition in eq. (5.1) is the first filter to ensure a successful thermal leptogenesis.

The other necessary condition is to generate enough CP asymmetry, the asymmetry being

defined by,

ǫ
CP

=
Γ(ν2 → ℓφ) − Γ(ν2 → ℓ̄φ̄)

Γ(ν2 → ℓφ) + Γ(ν2 → ℓ̄φ̄)
. (5.2)

This asymmetry gets a non-zero value due to the interference between the tree level diagram

of figure 3a and one-loop diagrams of figure 3b and 3c. The asymmetry is given by,

ǫ
CP

=
1

8πK22

∑

j 6=2

Im[K2
2j

] f(m2
νj

/m2
ν2

), (5.3)
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Figure 3: Diagrams for the CP-asymmetry decays, at tree (a) and loop (b)-(c) level, of the second

neutrino eigenstate ν2 into the charged lepton and the charged Higgs boson.

where f is the loop factor [24], given by

f(x) =
√

x

[

1 − (1 + x) ln
1 + x

x
+

1

1 − x

]

, (5.4)

in the case of a hierarchical neutrino spectrum. Here ν2, the next-to-lightest neutrino,

is the external (i.e. decaying) mode and νj the exchanged eigenstate (see figure 3). The

amount of CP asymmetry generated can be magnified by the loop function and/or the

Yukawa couplings. However, due to the large hierarchy between the lightest first state ν1

and the next-to-lightest state ν2, much enhancement from the Yukawa couplings cannot be

expected, as we will discuss more precisely in the next subsection. The other enhancement

may then come from the loop function via resonances. The discussion on the characteristics

of the generated KK neutrino spectrum in the previous section clearly shows that we
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are indeed often in this favorable resonance situation (⇔ ε ∼ 1/2R), since the neutrino

eigenstates are almost pairwise degenerate over a wide range of the obtained parameter

space. In this situation, the self energy contribution to the loop factor, which is the last

term in eq. (5.4), is modified to [25]

f res(m2
νj

/m2
ν2

) =
(m2

ν2
− m2

νj
)mν2Γνj

(m2
ν2

− m2
νj

)2 + m2
ν2

Γ2
νj

, (5.5)

where Γνj
≃ Kjjmνj

/8π is the decay width of state νj.

5.2 Results and discussion

As before, we have scanned the total parameter space with the additional constraints men-

tioned above concerning leptogenesis, concentrating on the scenario with ng = 1. We

checked that within the previously obtained parameter space, the first test to ensure lep-

togenesis (represented by eq. (5.1)), is satisfied.

As shows eq. (5.3), the source of a non-zero CP asymmetry is the difference of phases

of the Yukawa couplings. Since we are working with one generation of neutrinos, there is a

single (common) phase associated with the Yukawa couplings λ′ (the one associated with

the SM neutrino). However, the final (modified) Yukawa couplings λj may still be different

for different neutrino mass eigenstates νj , as V itself is a complex matrix. The resulting

difference of phases, generated in the process of diagonalization of the mass matrix as

described above, leads to a non-zero value of Im[λ†λ]22j .

However, although non-zero, Im[λ†λ]22j is small due to the large hierarchies among the

elements of the mass matrix, which in turn is essential to generate a realistic neutrino

spectrum with small active-sterile mixing angles. We find numerically that the resonance

enhancement in ǫ
CP

from the loop function cannot compensate this suppression from the

Yukawa couplings in order to ultimately generate a sufficient CP asymmetry for a successful

leptogenesis: ǫ
CP

> 10−8 [26] (assuming the usual orders of magnitude for the washout

factors). Thus, although the pairwise quasi-degenerate KK neutrino spectrum for one-

generation of SM neutrino is favorable for yielding a good value of ǫ
CP

, but the suppression

of the same from the Yukawa couplings turns out to be too dominant.

A possible alternative for a potentially successful leptogenesis could be to probe a

more realistic model with three generations of SM neutrinos on the 3-brane, with three

extra right handed neutrinos in the bulk. The mass matrix in eq. (2.16) in that case

would have a similar structure with h1 and h2 replaced by 3 × 3 matrices in the flavor

space. The masses of the nth neutrino states would remain approximately the same for

each generation and the differences in the masses of the three light neutrinos would only

come from the Yukawa couplings. This initial difference in the Yukawa couplings could

be enhanced further during the process of diagonalization of the mass matrix. This is in

contrast to the one-generation case where we had to start from a single Yukawa coupling,

and the process of matrix diagonalization was the only source to create a difference in the

final Yukawa coupling phases. Therefore, we could expect a much larger contribution to

the CP asymmetry from the Im[λ†λ] factor, compared to the one-generation case.
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6. Conclusions

In this work, we have considered an L-breaking extra dimensional scenario, with the SM

particles localized on a 3-brane and an additional right handed neutrino propagating along

an extra dimension, providing new mechanisms for suppressing the neutrino mass. We

probed the possibilities of this model to account simultaneously for a realistic neutrino

mass spectrum and a sufficient lepton asymmetry (from the decays of the KK neutrinos).

We considered two variants of the above scenario.

The first is when this extra dimension is the only available one (ng = 1). Then there

exist fundamental parameters which give rise to a neutrino spectrum respecting the exper-

imental constraints, on neutrino masses and active-sterile neutrino mixings (like the SNO

bounds). We have found that in this framework, the neutrino mass suppression originates

dominantly from the ED see-saw mechanism and partially from the ED wave function

overlap effect. In fact, the SNO data limit the effect of the wave function overlap but a

sufficiently small neutrino mass can be generated thanks to the ED see-saw mechanism.

For certain parameter domains, the spectra in this scenario consists of pairwise quasi-

degenerate heavy (KK) neutrinos, together with a light neutrino. We observed that under

the constraints on neutrino masses that we have imposed, a “brane shifted” framework of

the extra dimensional model is not essential for generating a realistic mass spectra. Also,

the inverse radius of compactification has to be pushed to ∼ 400 GeV (or more). This in

turn results in very tiny phase differences among the modified Yukawa couplings (after the

process of mass matrix diagonalization) so that it is not possible to create a CP asymmetry

large enough to insure a successful leptogenesis. Indeed, such a tininess is not sufficiently

compensated by the enhancement from the resonant loop function (related to the decay of

the KK neutrinos) which is due to the pairwise quasi-degeneracy property of the spectrum.

In the second variant where gravity can propagate in more extra dimensions (ng > 1),

the fundamental gravity scale is reduced down to the TeV scale so that the gauge hierarchy

problem is addressed through the ADD approach. We have found that in this framework,

the neutrino mass suppression originates also primarily from the ED see-saw mechanism

and the compactification scale is of an order of magnitude much larger than the fundamental

gravity scale.
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A. Approximate analytical estimation of KK-neutrino masses

Here we intend to show analytically that when the eigenvalues (En with n ≥ 2) of mass
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matrix (2.16) are taken equal to the diagonal elements, their correction are much smaller

than the eigenvalues themselves. For that purpose, let us start with the 4 × 4 form of

eq. (2.16),

M =











0 m(0) m(−1) m(1)

m(0) ε 0 0

m(−1) 0 ε − 1
R 0

m(1) 0 0 ε + 1
R











. (A.1)

All the obtained sets of parameters (see discussion on figure 1) lead to a significant hierarchy

in m/ε (case (1) of eq. (3.4)). Hence the m(n) values are systematically much smaller

than ε, from eq. (2.17), namely: m(n) ≪ ε. We can thus rewrite matrix in eq. (A.1) as

M = MD + MI , where MD is the diagonal matrix constructed from M, and MI is a

perturbation matrix with no diagonal entries given as,

MI =











0 m(0) m(−1) m(1)

m(0) 0 0 0

m(−1) 0 0 0

m(1) 0 0 0











. (A.2)

The zeroth order eigenvalues Ei of M can be written as, E1 = 0, E2 = ε, E3 = ε− 1/R, E4 =

ε + 1/R. Since MI has all diagonal elements equal to zero, the lowest order correction to

the eigenvalues reads as,

δEn =
∑

n′ 6=n

(< ψn |MI |ψn′ >)2

En − En′

, (A.3)

where the ψ’s are the zeroth order eigenvectors (considering the non-degenerate case).

Thus, for our case we have from the above relations,

δE1 =
(m(0))2

−ε
+

(m(1))2

−ε − 1/R
+

(m(−1))2

−ε + 1/R
(A.4)

δEn = (m(n))2/En, (A.5)

where m(n) is given by eq. (2.17) and n > 1. Since m ≪ ε, the first two of the above

relations lead to

δE1 ≤ m2

[

2ε

(1/R)2 − (ε)2
− 1

ε

]

, (A.6)

δE2 ≤ m2/ε. (A.7)

These inequalities can immediately be generalized to the N × N mass-matrix as,

δE1 ≤ m2





(N−1)/2
∑

n=1

2ε

(n/R)2 − (ε)2
− 1

ε



 , (A.8)

δE2 ≤ m2/ε. (A.9)

For the maximum value of ε (= 1/2R), the first term on the right hand side of eq. (A.8) is

∼ 2R for large N , so that δE1 ∼ 0. For smaller values of ε, δE1 would be dominated by the
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second term on right hand side. For all the other eigenvalues with n > 2, one can derive

En ≥ ε. Thus, in general the numerical value of δEn for any n verifies

|δEn| ≤ m2/ε. (A.10)

So let us study the m2/ε value. For R−1 . 108 GeV, ε & 200 GeV (see figure 1)

and m . 10−1 GeV (c.f. eq. (2.18) and eq. (2.5) in case of the scenario with ng =

1). Hence, one has m2/ε . 10−5 GeV. Now for R−1 & 108 GeV, ε ∼ R−1/2 and

m ∼ 10−4 (R−1/1GeV)1/3 GeV, so that m2/ε ∼ 10−8 (R−1/1GeV)−1/3 GeV and thus

m2/ε . 10−11 GeV. Therefore, from eq. (A.10), we conclude that one has systematically

|δEn| ≪ En for each n ≥ 2, since En≥2 & ε & 200 GeV. A similar analysis could be per-

formed for the case of the degenerate mass spectra (then we would have to start from the

corresponding relation of eq. (A.3) for degenerate eigenvalues).
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